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Note 

FORTRAN Subprograms for Finite-Difference Formulas 

1. INTRODUCTION 

ln this note two FORTRAN subprograms, FINDIF and FINDF, for finding 
integer finite-difference formulas are described. Such formulas can be found in 
tables [l] or derived by hand without too much difficulty if combinations of the 
following are satisfied: 

(i) The derivatives approximated are lower order (<4), 
(ii) the approximation is on a uniform mesh, 
(iii) the derivative point is “centered,” 
(iv) the required order of accuracy is low (<4), 
(v) the dimensionality of the mesh is at most 2. 

With the advent of the new parallel and pipeline computers, more complex difference 
methods requiring formula outside the realm of (i)-(v) above have become feasible. 
For example: 

(i) numerical solutions to PDEs where deferred correction techniques [2] 
require finite-difference formulas to approximate the higher-order partial derivatives 
in truncation error expressions; 

(ii) number PDE models where mesh refinements (e.g., see [3]) or interactions 
between coarse and fine mesh geometries (such as a limited area weather model [4]) 
require finite-difference formulas on nonuniform grids. 

These programs were designed for those cases when fixed-order finite-difference 
formulas are required prior to coding a PDE model. They were not designed to 
interact dynamically with such a model, as might be required with a variable-order 
finite-difference package. 

2. PROGRAM DESCRIPTION 

Subroutine FINDIF computes the integer coefficients j(l), j(2),..., j(n), L for the 
finite-difference approximation to the mth derivative at x = p . h of a function f(x) 
given at k(1) . A,..., k(n) . h. The form of the approximation is 

d”f(p - h)/dP = t j(i) * f(k(i) * h)/UP + O(hv). (1) 
i=l 
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The mesh geometry and derivative point can be any integer multiples of some mesh 
increment h (h is a notational convenience and not an input parameter). Any stencil 
consisting of rational numbers can be put in this form. The asymptotic error estimate r 
is also returned by the program. Subroutine FINPDF is the multidimensional extension 
of FINDIF. Assume now thatfis a real-valued function given on a t-dimensional grid. 
Denote the points wherefis given in the ith dimension by ki(j) . h(i), j = l,..., ni . 
No special relationship need exist between h(l),..., h(t) (the basic mesh increments in 
each dimension). Assume an approximation to the (m, ,..., mt) mixed partial derivative 
at x1 = p(l) . h(l),..., xt = p(t) . h(t) is required. The increment multiplies ki( j), 
j = l,..., n(i), p(i), i = I,..., t, can be any integer values. FINPDF computes the 
integers j(i, ,..., it), L, t(i) in the difference formula 

6”f(x, ,...) Xt)/aX~(l) ..* xy (m = m(1) + a’* + m(t)) 

,..., it) .f(kl(i,) . h, ,..., P(i,) . h,) 
L?,m(l) . . * hY’t’ 

+ i O(h;“‘). (2) 
1 i=l 

By differentiating the LaGrange interpolating polynomial [5], one can derive the 
following expression for thejth rational coefficient in the finite-difference formula as 
sums and products of rational numbers. 

IFi ( k(j) - &P(j, i)) i=l 
) * ; tt, (kCf) 1 gig fy”,))). (3) 

The sum on the right is over all injections 0: (1, 2 ,..., n - m} ---f {l,..., n: (i.e., over 
all (n - m)-order subsets of (l,..., n>), and the index function Y is defined by 

Y(j, i) = i if i<j 
(j = I,..., n). (4) 

= i+ 1 if i>j 

This expression is used to compute each coefficient recursively by using only integer 
(fixed-point) aritmetic. This approach is not computationally optimal but eliminates 
roundoff error considerations and allows numerator-denominator cancellation prior 
to multiplication of each pair of rational numbers. This minimizes the likelihood of 
integer overflow (an error condition that is flagged). Runs on the Control Data 
7600 with m = 1, i = (n + I)/2 and uniform meshes first overflowed when n = 33; 
runs with m = n - 1, i = 1 first overflowed when n = 52. 

As noted, the mesh geometry inputs to FINDIF, FINPDF are represented (modulo 
increments hi) by integer tuples. The formulas generated are invariant under integer 
coefficient linear transformations and cancellations of common factors in the integer 
tuples. For example, k(1) = 8400, k(2) = 9600, k(3) = 12,000, /r(4) = 14,400, 
p = 7200 yield (for any m < 3) the same difference formula as k(1) = 2, k(2) = -1, 
k(3) = 1, k(4) = 3, p = 0. Such reductions should be performed prior to calling 
the subprograms since they reduce the likelihood of integer overflow. 



FORTRAN SUBPROGRAMS FOR DIFFERENCE FORMULAS 115 

The time required to compute a one-dimensional difference formula is proportional 
to 

T(n, m) = n . 111 * (/I - M?) . I1 
t 1 111 . (5) 

The last factor is dominant when IZ is large and m is in the middle portion of the integer 
interval [l, n]. Tn these cases (which should never occur in practice) FTNDTF is 
prohibitively slow. For example, T(30,15)/ T(30,l) is approximately lo*. 

3. EXAMPLES 

EXAMPLE I. The truncation error for the Crank-Nicholson scheme [6] applied to 
the heat equation iJt = U,, (on a uniform mesh in space and time, xi = idx, i = 0, 
1, 2 ,...: t, = ndt, n ---_ 0, 1, 2 ,...) is 

Tj” = (AX’ - a4uyi2/aX4 + At” . 66q’L*i/2/aX6)/i2. (6) 

Here CJ!n+1)‘2 is U at xj , tnfli2 . A second-order approximation to Tjn would require, 
in par&ular, the difference formula for PU(x)/i?x6 at the left boundary x, = 0. The 
eight points x0, x1 ,..., x, are needed for an 0(dx2) approximation. If we take n = 8, 
k(1) =: 0, k(2) = 1, k(3) = 2, k(4) = 3, k(5) = 4, k(6) = 5, k(7) == 6, k(8)) = 7, 
m = 6, and p = 0, FINDTF gives 

(4U, - 27iJ2 + 78U, - 125U, + 12OU, - 69U, + 22U, - 3u,)/Ax6 (7) 

and Y = 2. Setting p = 1, 2, 3 will yield the other left-boundary formulas. 

EXAMPLE 2. Suppose we are simulating a limited-area weather model using 
sixth-order finite differencing. The simple hyperbolic equation U, = -U, is solved 
simultaneously for a coarse mesh function U”(x) (given at..., -8h, -4h, 0, 4h, Sh,...) 
and a fine mesh function V(x) (given at h, 3h, 7h,...). To compute aU”(x)/ax at 
x = h (the fine mesh left boundary), we choose the seven closest points from the two 
meshes to base the difference formula on. Taking n = 7, k(1) = -4, k(2) = 0, 
k(3) = I, k(4) = 3, k(5) = 4, k(6) = 5, k(7) = 7, m = I, and p = 1, FINDIF 
returns the coefficients below. 

[ 
6 . UC,, - 1980 . U,’ - 231 . U,iF + 4950. (I;,‘ 

- 3850 . U& + 1155 . U,” - 50 . U& 1 
4620 . II -- + O(h6). 

(8) 

EXAMPLE 3. The truncation error, resulting from the usual second-order finite- 
difference approximation to the elliptic equation with cross derivative 

4x3 Y)Um + wx, Y)U,, + 4x7 Y>U,, = g(4 Y) (9) 
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on a grid xi = i~lx(i = 0 ,..., N), yi = j . dy(j = 0 ,..., M), includes the term 
Ax2Z4U(x, y)/iix3Zy. Applying deferred corrections, to increase the accuracy to 
fourth order, requires second-our difference approximations to this term at all 
nonspecified grid points. At (Ax, 0) we take n(1) = 5, kl(l) = 0, k’(2) = 1, k’(3) = 2, 
kl(4) = 3, k’(5) = 4, m(l) = 3, p(l) = 1, and n(2) = 3, k2(1) = 0, k2(2) = I, 
k2(3) = 2, m(2) = 1, p(2) = 0. With this choice FINPDF yields 

= [-27 . U,,, - 108 . U2,i - 9 US,, + 90 . U4*i i- 54 LJS,i 
i 3 . c;,, + 12 . u,,, + 1 . u;., - 10 . Lla.2 - 6 U,., (10) 
-c 24 U,,, + 96 ’ U,,, + 8 . rl;,, - 80 . U4,3 - 48 . Uz,:,] 

-+ Ax3 Ay + 0(Ax2 $ Ay2) 

The taks performed by FINDIF and FINPDF might be handled with more ease 
by using a symbolic manipulation language. The implementation described in this 
note makes them immediately available to anyone with a rudimentary knowledge of 
FORTRAN. The programs and more details can be obtained by writing directly to 
the author at NCAR. 
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